Libav
ac3enc_template.c
Go to the documentation of this file.
1 /*
2  * AC-3 encoder float/fixed template
3  * Copyright (c) 2000 Fabrice Bellard
4  * Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com>
5  * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
6  *
7  * This file is part of Libav.
8  *
9  * Libav is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * Libav is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with Libav; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
29 #include <stdint.h>
30 
31 #include "libavutil/internal.h"
32 
33 /* prototypes for static functions in ac3enc_fixed.c and ac3enc_float.c */
34 
35 static void scale_coefficients(AC3EncodeContext *s);
36 
37 static int normalize_samples(AC3EncodeContext *s);
38 
39 static void clip_coefficients(DSPContext *dsp, CoefType *coef, unsigned int len);
40 
41 static CoefType calc_cpl_coord(CoefSumType energy_ch, CoefSumType energy_cpl);
42 
43 
45 {
46  int ch;
47 
48  FF_ALLOC_OR_GOTO(s->avctx, s->windowed_samples, AC3_WINDOW_SIZE *
49  sizeof(*s->windowed_samples), alloc_fail);
50  FF_ALLOC_OR_GOTO(s->avctx, s->planar_samples, s->channels * sizeof(*s->planar_samples),
51  alloc_fail);
52  for (ch = 0; ch < s->channels; ch++) {
53  FF_ALLOCZ_OR_GOTO(s->avctx, s->planar_samples[ch],
54  (AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples),
55  alloc_fail);
56  }
57 
58  return 0;
59 alloc_fail:
60  return AVERROR(ENOMEM);
61 }
62 
63 
64 /*
65  * Copy input samples.
66  * Channels are reordered from Libav's default order to AC-3 order.
67  */
69 {
70  int ch;
71 
72  /* copy and remap input samples */
73  for (ch = 0; ch < s->channels; ch++) {
74  /* copy last 256 samples of previous frame to the start of the current frame */
75  memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_BLOCK_SIZE * s->num_blocks],
76  AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));
77 
78  /* copy new samples for current frame */
79  memcpy(&s->planar_samples[ch][AC3_BLOCK_SIZE],
80  samples[s->channel_map[ch]],
81  AC3_BLOCK_SIZE * s->num_blocks * sizeof(s->planar_samples[0][0]));
82  }
83 }
84 
85 
86 /*
87  * Apply the MDCT to input samples to generate frequency coefficients.
88  * This applies the KBD window and normalizes the input to reduce precision
89  * loss due to fixed-point calculations.
90  */
92 {
93  int blk, ch;
94 
95  for (ch = 0; ch < s->channels; ch++) {
96  for (blk = 0; blk < s->num_blocks; blk++) {
97  AC3Block *block = &s->blocks[blk];
98  const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];
99 
100 #if CONFIG_AC3ENC_FLOAT
101  s->fdsp.vector_fmul(s->windowed_samples, input_samples,
103 #else
104  s->ac3dsp.apply_window_int16(s->windowed_samples, input_samples,
106 #endif
107 
108  if (s->fixed_point)
109  block->coeff_shift[ch+1] = normalize_samples(s);
110 
111  s->mdct.mdct_calcw(&s->mdct, block->mdct_coef[ch+1],
112  s->windowed_samples);
113  }
114  }
115 }
116 
117 
118 /*
119  * Calculate coupling channel and coupling coordinates.
120  */
122 {
124 #if CONFIG_AC3ENC_FLOAT
125  LOCAL_ALIGNED_16(int32_t, fixed_cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
126 #else
127  int32_t (*fixed_cpl_coords)[AC3_MAX_CHANNELS][16] = cpl_coords;
128 #endif
129  int blk, ch, bnd, i, j;
130  CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}};
131  int cpl_start, num_cpl_coefs;
132 
133  memset(cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
134 #if CONFIG_AC3ENC_FLOAT
135  memset(fixed_cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
136 #endif
137 
138  /* align start to 16-byte boundary. align length to multiple of 32.
139  note: coupling start bin % 4 will always be 1 */
140  cpl_start = s->start_freq[CPL_CH] - 1;
141  num_cpl_coefs = FFALIGN(s->num_cpl_subbands * 12 + 1, 32);
142  cpl_start = FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs;
143 
144  /* calculate coupling channel from fbw channels */
145  for (blk = 0; blk < s->num_blocks; blk++) {
146  AC3Block *block = &s->blocks[blk];
147  CoefType *cpl_coef = &block->mdct_coef[CPL_CH][cpl_start];
148  if (!block->cpl_in_use)
149  continue;
150  memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef));
151  for (ch = 1; ch <= s->fbw_channels; ch++) {
152  CoefType *ch_coef = &block->mdct_coef[ch][cpl_start];
153  if (!block->channel_in_cpl[ch])
154  continue;
155  for (i = 0; i < num_cpl_coefs; i++)
156  cpl_coef[i] += ch_coef[i];
157  }
158 
159  /* coefficients must be clipped in order to be encoded */
160  clip_coefficients(&s->dsp, cpl_coef, num_cpl_coefs);
161  }
162 
163  /* calculate energy in each band in coupling channel and each fbw channel */
164  /* TODO: possibly use SIMD to speed up energy calculation */
165  bnd = 0;
166  i = s->start_freq[CPL_CH];
167  while (i < s->cpl_end_freq) {
168  int band_size = s->cpl_band_sizes[bnd];
169  for (ch = CPL_CH; ch <= s->fbw_channels; ch++) {
170  for (blk = 0; blk < s->num_blocks; blk++) {
171  AC3Block *block = &s->blocks[blk];
172  if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch]))
173  continue;
174  for (j = 0; j < band_size; j++) {
175  CoefType v = block->mdct_coef[ch][i+j];
176  MAC_COEF(energy[blk][ch][bnd], v, v);
177  }
178  }
179  }
180  i += band_size;
181  bnd++;
182  }
183 
184  /* calculate coupling coordinates for all blocks for all channels */
185  for (blk = 0; blk < s->num_blocks; blk++) {
186  AC3Block *block = &s->blocks[blk];
187  if (!block->cpl_in_use)
188  continue;
189  for (ch = 1; ch <= s->fbw_channels; ch++) {
190  if (!block->channel_in_cpl[ch])
191  continue;
192  for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
193  cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd],
194  energy[blk][CPL_CH][bnd]);
195  }
196  }
197  }
198 
199  /* determine which blocks to send new coupling coordinates for */
200  for (blk = 0; blk < s->num_blocks; blk++) {
201  AC3Block *block = &s->blocks[blk];
202  AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL;
203 
204  memset(block->new_cpl_coords, 0, sizeof(block->new_cpl_coords));
205 
206  if (block->cpl_in_use) {
207  /* send new coordinates if this is the first block, if previous
208  * block did not use coupling but this block does, the channels
209  * using coupling has changed from the previous block, or the
210  * coordinate difference from the last block for any channel is
211  * greater than a threshold value. */
212  if (blk == 0 || !block0->cpl_in_use) {
213  for (ch = 1; ch <= s->fbw_channels; ch++)
214  block->new_cpl_coords[ch] = 1;
215  } else {
216  for (ch = 1; ch <= s->fbw_channels; ch++) {
217  if (!block->channel_in_cpl[ch])
218  continue;
219  if (!block0->channel_in_cpl[ch]) {
220  block->new_cpl_coords[ch] = 1;
221  } else {
222  CoefSumType coord_diff = 0;
223  for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
224  coord_diff += FFABS(cpl_coords[blk-1][ch][bnd] -
225  cpl_coords[blk ][ch][bnd]);
226  }
227  coord_diff /= s->num_cpl_bands;
228  if (coord_diff > NEW_CPL_COORD_THRESHOLD)
229  block->new_cpl_coords[ch] = 1;
230  }
231  }
232  }
233  }
234  }
235 
236  /* calculate final coupling coordinates, taking into account reusing of
237  coordinates in successive blocks */
238  for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
239  blk = 0;
240  while (blk < s->num_blocks) {
241  int av_uninit(blk1);
242  AC3Block *block = &s->blocks[blk];
243 
244  if (!block->cpl_in_use) {
245  blk++;
246  continue;
247  }
248 
249  for (ch = 1; ch <= s->fbw_channels; ch++) {
250  CoefSumType energy_ch, energy_cpl;
251  if (!block->channel_in_cpl[ch])
252  continue;
253  energy_cpl = energy[blk][CPL_CH][bnd];
254  energy_ch = energy[blk][ch][bnd];
255  blk1 = blk+1;
256  while (!s->blocks[blk1].new_cpl_coords[ch] && blk1 < s->num_blocks) {
257  if (s->blocks[blk1].cpl_in_use) {
258  energy_cpl += energy[blk1][CPL_CH][bnd];
259  energy_ch += energy[blk1][ch][bnd];
260  }
261  blk1++;
262  }
263  cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl);
264  }
265  blk = blk1;
266  }
267  }
268 
269  /* calculate exponents/mantissas for coupling coordinates */
270  for (blk = 0; blk < s->num_blocks; blk++) {
271  AC3Block *block = &s->blocks[blk];
272  if (!block->cpl_in_use)
273  continue;
274 
275 #if CONFIG_AC3ENC_FLOAT
276  s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1],
277  cpl_coords[blk][1],
278  s->fbw_channels * 16);
279 #endif
281  fixed_cpl_coords[blk][1],
282  s->fbw_channels * 16);
283 
284  for (ch = 1; ch <= s->fbw_channels; ch++) {
285  int bnd, min_exp, max_exp, master_exp;
286 
287  if (!block->new_cpl_coords[ch])
288  continue;
289 
290  /* determine master exponent */
291  min_exp = max_exp = block->cpl_coord_exp[ch][0];
292  for (bnd = 1; bnd < s->num_cpl_bands; bnd++) {
293  int exp = block->cpl_coord_exp[ch][bnd];
294  min_exp = FFMIN(exp, min_exp);
295  max_exp = FFMAX(exp, max_exp);
296  }
297  master_exp = ((max_exp - 15) + 2) / 3;
298  master_exp = FFMAX(master_exp, 0);
299  while (min_exp < master_exp * 3)
300  master_exp--;
301  for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
302  block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] -
303  master_exp * 3, 0, 15);
304  }
305  block->cpl_master_exp[ch] = master_exp;
306 
307  /* quantize mantissas */
308  for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
309  int cpl_exp = block->cpl_coord_exp[ch][bnd];
310  int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24;
311  if (cpl_exp == 15)
312  cpl_mant >>= 1;
313  else
314  cpl_mant -= 16;
315 
316  block->cpl_coord_mant[ch][bnd] = cpl_mant;
317  }
318  }
319  }
320 
321  if (CONFIG_EAC3_ENCODER && s->eac3)
323 }
324 
325 
326 /*
327  * Determine rematrixing flags for each block and band.
328  */
330 {
331  int nb_coefs;
332  int blk, bnd, i;
333  AC3Block *block, *block0;
334 
336  return;
337 
338  for (blk = 0; blk < s->num_blocks; blk++) {
339  block = &s->blocks[blk];
340  block->new_rematrixing_strategy = !blk;
341 
342  block->num_rematrixing_bands = 4;
343  if (block->cpl_in_use) {
344  block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61);
345  block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37);
346  if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands)
347  block->new_rematrixing_strategy = 1;
348  }
349  nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
350 
351  if (!s->rematrixing_enabled) {
352  block0 = block;
353  continue;
354  }
355 
356  for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
357  /* calculate calculate sum of squared coeffs for one band in one block */
358  int start = ff_ac3_rematrix_band_tab[bnd];
359  int end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
360  CoefSumType sum[4] = {0,};
361  for (i = start; i < end; i++) {
362  CoefType lt = block->mdct_coef[1][i];
363  CoefType rt = block->mdct_coef[2][i];
364  CoefType md = lt + rt;
365  CoefType sd = lt - rt;
366  MAC_COEF(sum[0], lt, lt);
367  MAC_COEF(sum[1], rt, rt);
368  MAC_COEF(sum[2], md, md);
369  MAC_COEF(sum[3], sd, sd);
370  }
371 
372  /* compare sums to determine if rematrixing will be used for this band */
373  if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))
374  block->rematrixing_flags[bnd] = 1;
375  else
376  block->rematrixing_flags[bnd] = 0;
377 
378  /* determine if new rematrixing flags will be sent */
379  if (blk &&
380  block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) {
381  block->new_rematrixing_strategy = 1;
382  }
383  }
384  block0 = block;
385  }
386 }
387 
388 
390  const AVFrame *frame, int *got_packet_ptr)
391 {
393  int ret;
394 
396  ret = ff_ac3_validate_metadata(s);
397  if (ret)
398  return ret;
399  }
400 
401  if (s->bit_alloc.sr_code == 1 || s->eac3)
403 
404  copy_input_samples(s, (SampleType **)frame->extended_data);
405 
406  apply_mdct(s);
407 
408  if (s->fixed_point)
410 
411  clip_coefficients(&s->dsp, s->blocks[0].mdct_coef[1],
412  AC3_MAX_COEFS * s->num_blocks * s->channels);
413 
414  s->cpl_on = s->cpl_enabled;
416 
417  if (s->cpl_on)
419 
421 
422  if (!s->fixed_point)
424 
426 
428 
430  if (ret) {
431  av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
432  return ret;
433  }
434 
436 
438 
439  if ((ret = ff_alloc_packet(avpkt, s->frame_size))) {
440  av_log(avctx, AV_LOG_ERROR, "Error getting output packet\n");
441  return ret;
442  }
443  ff_ac3_output_frame(s, avpkt->data);
444 
445  if (frame->pts != AV_NOPTS_VALUE)
446  avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->delay);
447 
448  *got_packet_ptr = 1;
449  return 0;
450 }
static void scale_coefficients(AC3EncodeContext *s)
uint8_t new_rematrixing_strategy
send new rematrixing flags in this block
Definition: ac3enc.h:140
static CoefType calc_cpl_coord(CoefSumType energy_ch, CoefSumType energy_cpl)
void(* float_to_fixed24)(int32_t *dst, const float *src, unsigned int len)
Convert an array of float in range [-1.0,1.0] to int32_t with range [-(1<<24),(1<<24)].
Definition: ac3dsp.h:89
This structure describes decoded (raw) audio or video data.
Definition: frame.h:107
int AC3_NAME() allocate_sample_buffers(AC3EncodeContext *s)
static void apply_mdct(AC3EncodeContext *s)
uint8_t ** cpl_coord_exp
coupling coord exponents (cplcoexp)
Definition: ac3enc.h:137
#define AC3_MAX_COEFS
Definition: ac3.h:34
#define AC3_WINDOW_SIZE
Definition: ac3.h:38
void ff_ac3_process_exponents(AC3EncodeContext *s)
Calculate final exponents from the supplied MDCT coefficients and exponent shift. ...
Definition: ac3enc.c:634
void ff_eac3_set_cpl_states(AC3EncodeContext *s)
Set coupling states.
Definition: eac3enc.c:91
static int16_t * samples
Definition: output.c:53
uint8_t ** cpl_coord_mant
coupling coord mantissas (cplcomant)
Definition: ac3enc.h:138
int start_freq[AC3_MAX_CHANNELS]
start frequency bin (strtmant)
Definition: ac3enc.h:205
#define blk(i)
Definition: sha.c:173
AC3BitAllocParameters bit_alloc
bit allocation parameters
Definition: ac3enc.h:222
#define FFALIGN(x, a)
Definition: common.h:62
DSPContext dsp
Definition: ac3enc.h:162
int ff_ac3_validate_metadata(AC3EncodeContext *s)
Validate metadata options as set by AVOption system.
Definition: ac3enc.c:1833
int rematrixing_enabled
stereo rematrixing enabled
Definition: ac3enc.h:214
static void apply_channel_coupling(AC3EncodeContext *s)
int channel_mode
channel mode (acmod)
Definition: ac3enc.h:193
int num_cpl_subbands
number of coupling subbands (ncplsubnd)
Definition: ac3enc.h:210
uint8_t rematrixing_flags[4]
rematrixing flags
Definition: ac3enc.h:142
int fbw_channels
number of full-bandwidth channels (nfchans)
Definition: ac3enc.h:187
uint8_t new_cpl_coords[AC3_MAX_CHANNELS]
send new coupling coordinates (cplcoe)
Definition: ac3enc.h:147
uint8_t cpl_master_exp[AC3_MAX_CHANNELS]
coupling coord master exponents (mstrcplco)
Definition: ac3enc.h:148
int num_rematrixing_bands
number of rematrixing bands
Definition: ac3enc.h:141
AC3DSPContext ac3dsp
AC-3 optimized functions.
Definition: ac3enc.h:164
int num_cpl_bands
number of coupling bands (ncplbnd)
Definition: ac3enc.h:211
int64_t CoefSumType
Definition: ac3enc.h:69
CoefType ** mdct_coef
MDCT coefficients.
Definition: ac3enc.h:129
uint8_t channel_in_cpl[AC3_MAX_CHANNELS]
channel in coupling (chincpl)
Definition: ac3enc.h:145
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:123
AC3EncOptions options
encoding options
Definition: ac3enc.h:159
void(* vector_fmul)(float *dst, const float *src0, const float *src1, int len)
Calculate the product of two vectors of floats and store the result in a vector of floats...
Definition: float_dsp.h:38
#define AVERROR(e)
Definition: error.h:43
int channels
total number of channels (nchans)
Definition: ac3enc.h:188
#define AC3_MAX_CHANNELS
maximum number of channels, including coupling channel
Definition: ac3.h:31
#define AC3_NAME(x)
Definition: ac3enc.h:62
int cpl_on
coupling turned on for this frame
Definition: ac3enc.h:208
void av_log(void *avcl, int level, const char *fmt,...)
Definition: log.c:148
int fixed_point
indicates if fixed-point encoder is being used
Definition: ac3enc.h:170
#define FFMAX(a, b)
Definition: common.h:55
int cpl_in_use
coupling in use for this block (cplinu)
Definition: ac3enc.h:144
#define CONFIG_EAC3_ENCODER
Definition: config.h:931
int cpl_enabled
coupling enabled for all frames
Definition: ac3enc.h:209
#define AC3_BLOCK_SIZE
Definition: ac3.h:35
int16_t SampleType
Definition: ac3enc.h:67
static int normalize_samples(AC3EncodeContext *s)
Data for a single audio block.
Definition: ac3enc.h:128
common internal API header
int ff_ac3_compute_bit_allocation(AC3EncodeContext *s)
Definition: ac3enc.c:1143
#define FFMIN(a, b)
Definition: common.h:57
int eac3
indicates if this is E-AC-3 vs. AC-3
Definition: ac3enc.h:171
int32_t
#define FFABS(a)
Definition: common.h:52
void ff_ac3_adjust_frame_size(AC3EncodeContext *s)
Adjust the frame size to make the average bit rate match the target bit rate.
Definition: ac3enc.c:180
int ff_alloc_packet(AVPacket *avpkt, int size)
Check AVPacket size and/or allocate data.
Definition: utils.c:1125
FFTContext mdct
FFT context for MDCT calculation.
Definition: ac3enc.h:165
void(* extract_exponents)(uint8_t *exp, int32_t *coef, int nb_coefs)
Definition: ac3dsp.h:127
int AC3_NAME() encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr)
AVFloatDSPContext fdsp
Definition: ac3enc.h:163
const SampleType * mdct_window
MDCT window function array.
Definition: ac3enc.h:166
SampleType ** planar_samples
Definition: ac3enc.h:231
NULL
Definition: eval.c:55
#define CPL_CH
coupling channel index
Definition: ac3.h:32
#define NEW_CPL_COORD_THRESHOLD
Definition: ac3enc.h:66
main external API structure.
Definition: avcodec.h:1054
const uint8_t * channel_map
channel map used to reorder channels
Definition: ac3enc.h:194
int end_freq[AC3_MAX_CHANNELS]
end frequency bin (endmant)
Definition: ac3enc.h:151
#define AC3_MAX_BLOCKS
Definition: ac3.h:36
AC-3 encoder private context.
Definition: ac3enc.h:157
void ff_ac3_output_frame(AC3EncodeContext *s, unsigned char *frame)
Write the frame to the output bitstream.
Definition: ac3enc.c:1661
void(* apply_window_int16)(int16_t *output, const int16_t *input, const int16_t *window, unsigned int len)
Apply symmetric window in 16-bit fixed-point.
Definition: ac3dsp.h:143
AC3Block blocks[AC3_MAX_BLOCKS]
per-block info
Definition: ac3enc.h:168
SampleType * windowed_samples
Definition: ac3enc.h:230
void ff_ac3_quantize_mantissas(AC3EncodeContext *s)
Quantize mantissas using coefficients, exponents, and bit allocation pointers.
Definition: ac3enc.c:1300
int num_blocks
number of blocks per frame
Definition: ac3enc.h:179
uint8_t coeff_shift[AC3_MAX_CHANNELS]
fixed-point coefficient shift values
Definition: ac3enc.h:139
#define AC3_FRAME_SIZE
Definition: ac3.h:37
int frame_size
current frame size in bytes
Definition: ac3enc.h:181
int cpl_end_freq
coupling channel end frequency bin
Definition: ac3enc.h:206
uint8_t cpl_band_sizes[AC3_MAX_CPL_BANDS]
number of coeffs in each coupling band
Definition: ac3enc.h:212
#define FF_ALLOC_OR_GOTO(ctx, p, size, label)
Definition: internal.h:109
AVCodecContext * avctx
parent AVCodecContext
Definition: ac3enc.h:160
static void compute_rematrixing_strategy(AC3EncodeContext *s)
void * priv_data
Definition: avcodec.h:1090
int allow_per_frame_metadata
Definition: ac3enc.h:119
int len
static void copy_input_samples(AC3EncodeContext *s, SampleType **samples)
#define MAC_COEF(d, a, b)
Definition: ac3enc.h:63
#define av_uninit(x)
Definition: attributes.h:109
#define LOCAL_ALIGNED_16(t, v,...)
Definition: internal.h:106
void ff_ac3_apply_rematrixing(AC3EncodeContext *s)
Apply stereo rematrixing to coefficients based on rematrixing flags.
Definition: ac3enc.c:269
const uint8_t ff_ac3_rematrix_band_tab[5]
Table of bin locations for rematrixing bands reference: Section 7.5.2 Rematrixing : Frequency Band De...
Definition: ac3tab.c:139
static av_always_inline int64_t ff_samples_to_time_base(AVCodecContext *avctx, int64_t samples)
Rescale from sample rate to AVCodecContext.time_base.
Definition: internal.h:153
void ff_ac3_group_exponents(AC3EncodeContext *s)
Group exponents.
Definition: ac3enc.c:576
int32_t CoefType
Definition: ac3enc.h:68
void ff_ac3_compute_coupling_strategy(AC3EncodeContext *s)
Set the initial coupling strategy parameters prior to coupling analysis.
Definition: ac3enc.c:198
This structure stores compressed data.
Definition: avcodec.h:950
int delay
Codec delay.
Definition: avcodec.h:1205
#define FF_ALLOCZ_OR_GOTO(ctx, p, size, label)
Definition: internal.h:118
#define AV_NOPTS_VALUE
Undefined timestamp value.
Definition: avutil.h:228
void(* mdct_calcw)(struct FFTContext *s, FFTDouble *output, const FFTSample *input)
Definition: fft.h:84
DSPContext.
Definition: dsputil.h:124
static void clip_coefficients(DSPContext *dsp, CoefType *coef, unsigned int len)
static int16_t block[64]
Definition: dct-test.c:170