FreeFOAM The Cross-Platform CFD Toolkit
GidaspowSchillerNaumann Class Reference

H, Enwald, E. Peirano, A-E Almstedt 'Eulerian Two-Phase Flow Theory Applied to Fluidization' Int. J. Multiphase Flow, Vol. 22, Suppl, pp. 21-66 (1996) Eq. 86-87, p. 40. More...


Detailed Description

H, Enwald, E. Peirano, A-E Almstedt 'Eulerian Two-Phase Flow Theory Applied to Fluidization' Int. J. Multiphase Flow, Vol. 22, Suppl, pp. 21-66 (1996) Eq. 86-87, p. 40.

This is identical to the Wen and Yu, Rowe model Table 3.6 p.56 in the Ph.D. thesis of Berend van Wachem 'Derivation, Implementation and Validation of Computer Simulation Models for Gas-Solid Fluidized Beds'

Source files

Definition at line 59 of file GidaspowSchillerNaumann.H.

+ Inheritance diagram for GidaspowSchillerNaumann:
+ Collaboration diagram for GidaspowSchillerNaumann:

List of all members.

Public Member Functions

 TypeName ("GidaspowSchillerNaumann")
 Runtime type information.
 GidaspowSchillerNaumann (const dictionary &interfaceDict, const volScalarField &alpha, const phaseModel &phasea, const phaseModel &phaseb)
 Construct from components.
virtual ~GidaspowSchillerNaumann ()
 Destructor.
tmp< volScalarFieldK (const volScalarField &Ur) const
 the dragfunction K used in the momentum eq.
- Public Member Functions inherited from dragModel
 TypeName ("dragModel")
 Runtime type information.
 declareRunTimeSelectionTable (autoPtr, dragModel, dictionary,(const dictionary &dict),(dict))
 dragModel (const dictionary &dict)
 Construct from components.
virtual ~dragModel ()
virtual scalar Cd (const scalar ReynoldsNumber, const scalar deviation) const =0
virtual scalar relaxationTime (const vector &URel, const scalar diameter, const scalar rho, const scalar liquidDensity, const scalar nu, const scalar deviation) const =0
 TypeName ("dragModel")
 Runtime type information.
 declareRunTimeSelectionTable (autoPtr, dragModel, dictionary,(const dictionary &interfaceDict, const volScalarField &alpha, const phaseModel &phasea, const phaseModel &phaseb),(interfaceDict, alpha, phasea, phaseb))
 dragModel (const dictionary &interfaceDict, const volScalarField &alpha, const phaseModel &phasea, const phaseModel &phaseb)
virtual ~dragModel ()
 Destructor.

Additional Inherited Members

- Static Public Member Functions inherited from dragModel
static autoPtr< dragModelNew (const dictionary &dict)
static autoPtr< dragModelNew (const dictionary &interfaceDict, const volScalarField &alpha, const phaseModel &phasea, const phaseModel &phaseb)
- Protected Attributes inherited from dragModel
const dictionarydict_
const dictionaryinterfaceDict_
const volScalarFieldalpha_
const phaseModelphasea_
const phaseModelphaseb_

Constructor & Destructor Documentation

GidaspowSchillerNaumann ( const dictionary interfaceDict,
const volScalarField alpha,
const phaseModel phasea,
const phaseModel phaseb 
)

Construct from components.

virtual ~GidaspowSchillerNaumann ( )
virtual

Destructor.


Member Function Documentation

TypeName ( "GidaspowSchillerNaumann"  )

Runtime type information.

tmp<volScalarField> K ( const volScalarField Ur) const
virtual

the dragfunction K used in the momentum eq.

ddt(alpha*rhoa*Ua) + ... = ... alpha*beta*K*(Ua-Ub) ddt(beta*rhob*Ub) + ... = ... alpha*beta*K*(Ub-Ua) NB ! ***************************** for numerical reasons alpha and beta has been extracted from the dragFunction K, so you MUST divide K by alpha*beta when implementing the drag function NB ! *****************************

Implements dragModel.


The documentation for this class was generated from the following file: