astropy:docs

Source code for astropy.modeling.polynomial

# Licensed under a 3-clause BSD style license - see LICENSE.rst

"""
This module contains predefined polynomial models.
"""

from __future__ import division

import collections

from textwrap import dedent

import numpy as np

from .core import ParametricModel, Model, SerialCompositeModel, format_input
from .functional_models import Shift
from .parameters import Parameter
from .utils import poly_map_domain, comb
from ..logger import log
from ..utils import lazyproperty, indent


__all__ = [
    'Chebyshev1D', 'Chebyshev2D', 'InverseSIP',
    'Legendre1D', 'Legendre2D', 'Polynomial1D',
    'Polynomial2D', 'SIP', 'OrthoPolynomialBase',
    'PolynomialModel'
]


class PolynomialBase(ParametricModel):
    """
    Base class for all polynomial-like models with an arbitrary number of
    parameters in the form of coeffecients.

    In this case Parameter instances are returned through the class's
    ``__getattr__`` rather than through class descriptors.
    """

    # Default _param_names list; this will be filled in by the implementation's
    # __init__
    _param_names = []

    linear = True
    col_deriv = False

    @lazyproperty
    def param_names(self):
        """Coefficient names generated based on the model's polynomial degree
        and number of dimensions.

        Subclasses should implement this to return parameter names in the
        desired format.

        On most `Model` classes this is a class attribute, but for polynomial
        models it is an instance attribute since each polynomial model instance
        can have different parameters depending on the degree of the polynomial
        and the number of dimensions, for example.
        """

        return self._param_names

    def __getattr__(self, attr):
        if self._param_names and attr in self._param_names:
            return Parameter(attr, default=0.0, model=self)
        else:
            return super(PolynomialBase, self).__getattr__(attr)

    def __setattr__(self, attr, value):
        # TODO: Support a means of specifying default values for coefficients
        # Check for self._ndim first--if it hasn't been defined then the
        # instance hasn't been initialized yet and self.param_names probably
        # won't work.
        # This has to vaguely duplicate the functionality of
        # Parameter.__set__.
        # TODO: I wonder if there might be a way around that though...
        if attr[0] != '_' and self._param_names and attr in self._param_names:
            param = Parameter(attr, default=0.0, model=self)
            # This is a little hackish, but we can actually reuse the
            # Parameter.__set__ method here
            param.__set__(self, value)
        else:
            super(PolynomialBase, self).__setattr__(attr, value)

    def _deriv_with_constraints(self, params=None, x=None, y=None):
        if y is None:
            d = np.array(self.deriv(x=x))
        else:
            d = np.array(self.deriv(x=x, y=y))

        if self.col_deriv:
            return d[self._fit_param_indices]
        else:
            return d[:, self._fit_param_indices]

[docs]class PolynomialModel(PolynomialBase): """ Base class for polynomial models. Its main purpose is to determine how many coefficients are needed based on the polynomial order and dimension and to provide their default values, names and ordering. """ def __init__(self, degree, n_inputs=1, n_outputs=1, param_dim=1, **params): self._degree = degree self._order = self.get_num_coeff(n_inputs) self._param_names = self._generate_coeff_names(n_inputs) self._n_inputs = n_inputs self._n_outputs = n_outputs if params: p = params.get('c0', params.get('c0_0')) if isinstance(p, collections.Sequence): n_params = len(p) else: n_params = 1 if param_dim != n_params: if param_dim == 1: log.info("Inferred {0} dimensions when creating a {1} model. " "Resetting param_dim to {2}".format( n_params, self.__class__.__name__, n_params)) param_dim = n_params else: raise ValueError("Number of coefficient sets ({0}) does " "not match number of parameter sets " "({1}).".format(n_params, param_dim)) self._validate_params(**params) super(PolynomialModel, self).__init__(param_dim=param_dim) for name, value in params.items(): setattr(self, name, value) @property
[docs] def degree(self): """TODO: Docstring for me""" return self._degree
@property
[docs] def n_inputs(self): """The number of input variables to model evaluation.""" return self._n_inputs
@property
[docs] def n_outputs(self): """The number of outputs returned when model is evaluated.""" return self._n_outputs
[docs] def get_num_coeff(self, ndim): """ Return the number of coefficients in one parameter set """ if self.degree < 1 or self.degree > 16: raise ValueError("Degree of polynomial must be 1< deg < 16") # deg+1 is used to account for the difference between iraf using # degree and numpy using exact degree if ndim != 1: nmixed = comb(self.degree, ndim) else: nmixed = 0 numc = self.degree * ndim + nmixed + 1 return numc
def _invlex(self): c = [] lencoeff = self.degree + 1 for i in range(lencoeff): for j in range(lencoeff): if i + j <= self.degree: c.append((j, i)) return c[::-1] def _validate_params(self, **params): numcoeff = self._order assert(len(params) == numcoeff) valid_params = set(self._param_names) provided_params = set(params) diff = valid_params.difference(provided_params) if diff: raise TypeError('Unrecognized input parameters: %s' % diff) def _generate_coeff_names(self, ndim): names = [] if ndim == 1: for n in range(self._order): names.append('c{0}'.format(n)) else: for i in range(self.degree + 1): names.append('c{0}_{1}'.format(i, 0)) for i in range(1, self.degree + 1): names.append('c{0}_{1}'.format(0, i)) for i in range(1, self.degree): for j in range(1, self.degree): if i + j < self.degree + 1: names.append('c{0}_{1}'.format(i, j)) return names
[docs]class OrthoPolynomialBase(PolynomialBase): """ This is a base class for the 2D Chebyshev and Legendre models. The polynomials implemented here require a maximum degree in x and y. Parameters ---------- x_degree : int degree in x y_degree : int degree in y x_domain : list or None domain of the x independent variable y_domain : list or None domain of the y independent variable x_window : list or None range of the x independent variable y_window : list or None range of the y independent variable param_dim : int number of parameter sets **params : dict {keyword: value} pairs, representing {parameter_name: value} """ n_inputs = 2 n_outputs = 1 def __init__(self, x_degree, y_degree, x_domain=None, x_window=None, y_domain=None, y_window=None, param_dim=1, **params): # TODO: Perhaps some of these other parameters should be properties? # TODO: An awful lot of the functionality in this method is still # shared by PolynomialModel; perhaps some of it can be generalized in # PolynomialBase self.x_degree = x_degree self.y_degree = y_degree self._order = self.get_num_coeff() self.x_domain = x_domain self.y_domain = y_domain self.x_window = x_window self.y_window = y_window self._param_names = self._generate_coeff_names() if params: p = params.get('c0_0') if isinstance(p, collections.Sequence): n_params = len(p) else: n_params = 1 if param_dim != n_params: if param_dim == 1: log.info("Inferred {0} dimensions when creating a {1} " "model. Resetting param_dim to {2}".format( n_params, self.__class__.__name__, n_params)) param_dim = n_params else: raise ValueError("Number of coefficient sets {0} does " "not match number of parameter sets " "({1})".format(n_params, param_dim)) self._validate_params(**params) super(OrthoPolynomialBase, self).__init__(param_dim=param_dim) for name, value in params.items(): setattr(self, name, value)
[docs] def get_num_coeff(self): """ Determine how many coefficients are needed Returns ------- numc : int number of coefficients """ return (self.x_degree + 1) * (self.y_degree + 1)
def _validate_params(self, **params): numcoeff = self.get_num_coeff() assert(len(params) == numcoeff) def _invlex(self): # TODO: This is a very slow way to do this; fix it and related methods # like _alpha c = [] xvar = np.arange(self.x_degree + 1) yvar = np.arange(self.y_degree + 1) for j in yvar: for i in xvar: c.append((i, j)) return np.array(c[::-1])
[docs] def invlex_coeff(self): coeff = [] xvar = np.arange(self.x_degree + 1) yvar = np.arange(self.y_degree + 1) for j in yvar: for i in xvar: name = 'c{0}_{1}'.format(i, j) coeff.append(getattr(self, name)) return np.array(coeff[::-1])
def _alpha(self): invlexdeg = self._invlex() invlexdeg[:, 1] = invlexdeg[:, 1] + self.x_degree + 1 nx = self.x_degree + 1 ny = self.y_degree + 1 alpha = np.zeros((ny * nx + 3, ny + nx)) for n in range(len(invlexdeg)): alpha[n][invlexdeg[n]] = [1, 1] alpha[-2, 0] = 1 alpha[-3, nx] = 1 return alpha
[docs] def imhorner(self, x, y, coeff): _coeff = list(coeff) _coeff.extend([0, 0, 0]) alpha = self._alpha() r0 = _coeff[0] nalpha = len(alpha) karr = np.diff(alpha, axis=0) kfunc = self._fcache(x, y) x_terms = self.x_degree + 1 y_terms = self.y_degree + 1 nterms = x_terms + y_terms for n in range(1, nterms + 1 + 3): setattr(self, 'r' + str(n), 0.) for n in range(1, nalpha): k = karr[n - 1].nonzero()[0].max() + 1 rsum = 0 for i in range(1, k + 1): rsum = rsum + getattr(self, 'r' + str(i)) val = kfunc[k - 1] * (r0 + rsum) setattr(self, 'r' + str(k), val) r0 = _coeff[n] for i in range(1, k): setattr(self, 'r' + str(i), 0.) result = r0 for i in range(1, nterms + 1 + 3): result = result + getattr(self, 'r' + str(i)) return result
def _generate_coeff_names(self): names = [] for j in range(self.y_degree + 1): for i in range(self.x_degree + 1): names.append('c{0}_{1}'.format(i, j)) return names def _fcache(self, x, y): # TODO: Write a docstring explaining the actual purpose of this method """To be implemented by subclasses""" raise NotImplementedError("Subclasses should implement this") @format_input def __call__(self, x, y): """ Transforms data using this model. Parameters -------------- x : scalar, list or array y : scalar, lis or array """ assert x.shape == y.shape, \ "Expected input arrays to have the same shape" if self.x_domain is not None: x = poly_map_domain(x, self.x_domain, self.x_window) if self.y_domain is not None: y = poly_map_domain(y, self.y_domain, self.y_window) invcoeff = self.invlex_coeff() return self.imhorner(x, y, invcoeff)
[docs]class Chebyshev1D(PolynomialModel): """ 1D Chebyshev polynomial of the 1st kind. Parameters ---------- degree : int degree of the series domain : list or None window : list or None If None, it is set to [-1,1] Fitters will remap the domain to this window param_dim : int number of parameter sets **params : dict keyword : value pairs, representing parameter_name: value """ def __init__(self, degree, domain=None, window=[-1, 1], param_dim=1, **params): self.domain = domain self.window = window super(Chebyshev1D, self).__init__(degree, n_inputs=1, n_outputs=1, param_dim=param_dim, **params)
[docs] def clenshaw(self, x, coeff): """ Evaluates the polynomial using Clenshaw's algorithm. """ if isinstance(x, tuple) or isinstance(x, list): x = np.asarray(x) if len(coeff) == 1: c0 = coeff[0] c1 = 0 elif len(coeff) == 2: c0 = coeff[0] c1 = coeff[1] else: x2 = 2 * x c0 = coeff[-2] c1 = coeff[-1] for i in range(3, len(coeff) + 1): tmp = c0 c0 = coeff[-i] - c1 c1 = tmp + c1 * x2 return c0 + c1 * x
[docs] def deriv(self, x, *params): """ Computes the Vandermonde matrix. Parameters ---------- x : ndarray input params : throw away parameter parameter list returned by non-linear fitters Returns ------- result : ndarray The Vandermonde matrix """ x = np.array(x, dtype=np.float, copy=False, ndmin=1) v = np.empty((self.degree + 1,) + x.shape, dtype=x.dtype) v[0] = x * 0 + 1 x2 = 2 * x v[1] = x for i in range(2, self.degree + 1): v[i] = v[i - 1] * x2 - v[i - 2] return np.rollaxis(v, 0, v.ndim)
@format_input def __call__(self, x): """ Transforms data using this model. Parameters -------------- x : scalar, list or array input """ if self.domain is not None: x = poly_map_domain(x, self.domain, self.window) return self.clenshaw(x, self.param_sets)
[docs]class Legendre1D(PolynomialModel): """ 1D Legendre polynomial. Parameters ---------- degree : int degree of the series domain : list or None window : list or None If None, it is set to [-1,1] Fitters will remap the domain to this window param_dim : int number of parameter sets **params : dict keyword: value pairs, representing parameter_name: value """ def __init__(self, degree, domain=None, window=[-1, 1], param_dim=1, **params): self.domain = domain self.window = window super(Legendre1D, self).__init__(degree, n_inputs=1, n_outputs=1, param_dim=param_dim, **params)
[docs] def clenshaw(self, x, coeff): if isinstance(x, tuple) or isinstance(x, list): x = np.asarray(x) if len(coeff) == 1: c0 = coeff[0] c1 = 0 elif len(coeff) == 2: c0 = coeff[0] c1 = coeff[1] else: nd = len(coeff) c0 = coeff[-2] c1 = coeff[-1] for i in range(3, len(coeff) + 1): tmp = c0 nd = nd - 1 c0 = coeff[-i] - (c1 * (nd - 1)) / nd c1 = tmp + (c1 * x * (2 * nd - 1)) / nd return c0 + c1 * x
[docs] def deriv(self, x, *params): """ Computes the Vandermonde matrix. Parameters ---------- x : ndarray input params : throw away parameter parameter list returned by non-linear fitters Returns ------- result : ndarray The Vandermonde matrix """ x = np.array(x, dtype=np.float, copy=False, ndmin=1) v = np.empty((self.degree + 1,) + x.shape, dtype=x.dtype) v[0] = x * 0 + 1 v[1] = x for i in range(2, self.degree + 1): v[i] = (v[i - 1] * x * (2 * i - 1) - v[i - 2] * (i - 1)) / i return np.rollaxis(v, 0, v.ndim)
@format_input def __call__(self, x): """ Transforms data using this model. Parameters -------------- x : scalar, list or array input """ if self.domain is not None: x = poly_map_domain(x, self.domain, self.window) return self.clenshaw(x, self.param_sets)
[docs]class Polynomial1D(PolynomialModel): """ 1D Polynomial model. Parameters ---------- degree : int degree of the series domain : list or None window : list or None If None, it is set to [-1,1] Fitters will remap the domain to this window param_dim : int number of parameter sets **params : dict keyword: value pairs, representing parameter_name: value """ def __init__(self, degree, domain=[-1, 1], window=[-1, 1], param_dim=1, **params): self.domain = domain self.window = window super(Polynomial1D, self).__init__(degree, n_inputs=1, n_outputs=1, param_dim=param_dim, **params)
[docs] def deriv(self, x, *params): """ Computes the Vandermonde matrix. Parameters ---------- x : ndarray input params : throw away parameter parameter list returned by non-linear fitters Returns ------- result : ndarray The Vandermonde matrix """ v = np.empty((self.degree + 1,) + x.shape, dtype=np.float) v[0] = x * 0 + 1 v[1] = x for i in range(2, self.degree + 1): v[i] = v[i - 1] * x return np.rollaxis(v, 0, v.ndim)
[docs] def horner(self, x, coef): c0 = coef[-1] + x * 0 for i in range(2, len(coef) + 1): c0 = coef[-i] + c0 * x return c0
@format_input def __call__(self, x): """ Transforms data using this model. Parameters -------------- x : scalar, list or array input """ return self.horner(x, self.param_sets)
[docs]class Polynomial2D(PolynomialModel): """ 2D Polynomial model. Represents a general polynomial of degree n: .. math:: P(x,y) = c_{0_0} + c_{1_0}*x + ...+ c_{n_0}*x^n + c_{0_1}*y + ...+ c_{0_n}*y^n + c_{1_1}*x*y + c_{1_2}*x*y^2 + ... + c_{1_(n-1)}*x*y^{n-1}+ ... + c_{(n-1)_1}*x^{n-1}*y Parameters ---------- degree : int highest power of the polynomial, the number of terms is degree+1 x_domain : list or None domain of the x independent variable y_domain : list or None domain of the y independent variable x_window : list or None range of the x independent variable y_window : list or None range of the y independent variable param_dim : int number of parameter sets **params : dict keyword: value pairs, representing parameter_name: value """ def __init__(self, degree, x_domain=[-1, 1], y_domain=[-1, 1], x_window=[-1, 1], y_window=[-1, 1], param_dim=1, **params): super(Polynomial2D, self).__init__(degree, n_inputs=2, n_outputs=1, param_dim=param_dim, **params) self.x_domain = x_domain self.y_domain = y_domain self.x_window = x_window self.y_window = y_window
[docs] def mhorner(self, x, y, coeff): """ Multivariate Horner's scheme Parameters -------------- x, y : array coeff : array of coefficients in inverse lexical order """ alpha = np.array(self._invlex()) r0 = coeff[0] r1 = r0 * 0.0 r2 = r0 * 0.0 karr = np.diff(alpha, axis=0) for n in range(len(karr)): if karr[n, 1] != 0: r2 = y * (r0 + r1 + r2) r1 = coeff[0] * 0. else: r1 = x * (r0 + r1) r0 = coeff[n + 1] return r0 + r1 + r2
[docs] def deriv(self, x, y, *params): """ Computes the Vandermonde matrix. Parameters ---------- x : ndarray input y : ndarray input params : throw away parameter parameter list returned by non-linear fitters Returns ------- result : ndarray The Vandermonde matrix """ if x.ndim == 2: x = x.flatten() if y.ndim == 2: y = y.flatten() if x.size != y.size: raise ValueError('Expected x and y to be of equal size') designx = x[:, None] ** np.arange(self.degree + 1) designy = y[:, None] ** np.arange(1, self.degree + 1) designmixed = [] for i in range(1, self.degree): for j in range(1, self.degree): if i + j <= self.degree: designmixed.append((x ** i) * (y ** j)) designmixed = np.array(designmixed).T if designmixed.any(): v = np.hstack([designx, designy, designmixed]) else: v = np.hstack([designx, designy]) return v
[docs] def invlex_coeff(self): coeff = [] lencoeff = range(self.degree + 1) for i in lencoeff: for j in lencoeff: if i + j <= self.degree: name = 'c{0}_{1}'.format(j, i) coeff.append(getattr(self, name)) return np.array(coeff[::-1])
@format_input def __call__(self, x, y): """ Transforms data using this model. Parameters -------------- x : scalar, list or array input y : scalar, list or array input """ invcoeff = self.invlex_coeff() assert x.shape == y.shape, \ "Expected input arrays to have the same shape" return self.mhorner(x, y, invcoeff)
[docs]class Chebyshev2D(OrthoPolynomialBase): """ 2D Chebyshev polynomial of the 1st kind. It is defined as .. math:: P_{n_m}(x,y) = \sum C_{n_m} T_n(x) T_m(y) Parameters ---------- x_degree : int degree in x y_degree : int degree in y x_domain : list or None domain of the x independent variable y_domain : list or None domain of the y independent variable x_window : list or None range of the x independent variable y_window : list or None range of the y independent variable param_dim : int number of parameter sets **params : dict keyword: value pairs, representing parameter_name: value """ def __init__(self, x_degree, y_degree, x_domain=None, x_window=[-1, 1], y_domain=None, y_window=[-1,1], param_dim=1, **params): super(Chebyshev2D, self).__init__(x_degree, y_degree, x_domain=x_domain, y_domain=y_domain, x_window=x_window, y_window=y_window, param_dim=param_dim, **params) def _fcache(self, x, y): """ Calculate the individual Chebyshev functions once and store them in a dictionary to be reused. """ x_terms = self.x_degree + 1 y_terms = self.y_degree + 1 kfunc = {} kfunc[0] = np.ones(x.shape) kfunc[1] = x.copy() kfunc[x_terms] = np.ones(y.shape) kfunc[x_terms + 1] = y.copy() for n in range(2, x_terms): kfunc[n] = 2 * x * kfunc[n - 1] - kfunc[n - 2] for n in range(x_terms + 2, x_terms + y_terms): kfunc[n] = 2 * y * kfunc[n - 1] - kfunc[n - 2] return kfunc
[docs] def deriv(self, x, y, *params): """ Derivatives with respect to the coefficients. This is an array with Chebyshev polynomials: Tx0Ty0 Tx1Ty0...TxnTy0...TxnTym Parameters ---------- x : ndarray input y : ndarray input params : throw away parameter parameter list returned by non-linear fitters Returns ------- result : ndarray The Vandermonde matrix """ if x.shape != y.shape: raise ValueError("x and y must have the same shape") x = x.flatten() y = y.flatten() x_deriv = self._chebderiv1d(x, self.x_degree + 1).T y_deriv = self._chebderiv1d(y, self.y_degree + 1).T ij = [] for i in range(self.y_degree + 1): for j in range(self.x_degree + 1): ij.append(x_deriv[j] * y_deriv[i]) v = np.array(ij) return v.T
def _chebderiv1d(self, x, deg): """ Derivative of 1D Chebyshev series """ x = np.array(x, dtype=np.float, copy=False, ndmin=1) d = np.empty((deg + 1, len(x)), dtype=x.dtype) d[0] = x * 0 + 1 if deg > 0: x2 = 2 * x d[1] = x for i in range(2, deg + 1): d[i] = d[i - 1] * x2 - d[i - 2] return np.rollaxis(d, 0, d.ndim)
[docs]class Legendre2D(OrthoPolynomialBase): """ Legendre 2D polynomial. Defined as: .. math:: P_{nm}(x,y) = C_{n_m} L_n(x ) L_m(y) Parameters ---------- x_degree : int degree in x y_degree : int degree in y x_domain : list or None domain of the x independent variable y_domain : list or None domain of the y independent variable x_window : list or None range of the x independent variable y_window : list or None range of the y independent variable param_dim : int number of parameter sets **params : dict keyword: value pairs, representing parameter_name: value """ def __init__(self, x_degree, y_degree, x_domain=None, x_window=[-1, 1], y_domain=None, y_window=[-1, 1], param_dim=1, **params): super(Legendre2D, self).__init__(x_degree, y_degree, x_domain=x_domain, y_domain=y_domain, x_window=x_window, y_window=y_window, param_dim=param_dim, **params) def _fcache(self, x, y): """ Calculate the individual Legendre functions once and store them in a dictionary to be reused. """ x_terms = self.x_degree + 1 y_terms = self.y_degree + 1 kfunc = {} kfunc[0] = np.ones(x.shape) kfunc[1] = x.copy() kfunc[x_terms] = np.ones(y.shape) kfunc[x_terms + 1] = y.copy() for n in range(2, x_terms): kfunc[n] = (((2 * (n - 1) + 1) * x * kfunc[n - 1] - (n - 1) * kfunc[n - 2]) / n) for n in range(2, y_terms): kfunc[n + x_terms] = ((2 * (n - 1) + 1) * y * kfunc[n + x_terms - 1] - (n - 1) * kfunc[n + x_terms - 2]) / (n) return kfunc
[docs] def deriv(self, x, y, *params): """ Derivatives with repect to the coefficients. This is an array with Legendre polynomials: Lx0Ly0 Lx1Ly0...LxnLy0...LxnLym Parameters ---------- x : ndarray input y : ndarray input params : throw away parameter parameter list returned by non-linear fitters Returns ------- result : ndarray The Vandermonde matrix """ if x.shape != y.shape: raise ValueError("x and y must have the same shape") x = x.flatten() y = y.flatten() x_deriv = self._legendderiv1d(x, self.x_degree + 1).T y_deriv = self._legendderiv1d(y, self.y_degree + 1).T ij = [] for i in range(self.y_degree + 1): for j in range(self.x_degree + 1): ij.append(x_deriv[j] * y_deriv[i]) v = np.array(ij) return v.T
def _legendderiv1d(self, x, deg): """Derivative of 1D Legendre polynomial""" x = np.array(x, dtype=np.float, copy=False, ndmin=1) d = np.empty((deg + 1,) + x.shape, dtype=x.dtype) d[0] = x * 0 + 1 if deg > 0: d[1] = x for i in range(2, deg + 1): d[i] = (d[i - 1] * x * (2 * i - 1) - d[i - 2] * (i - 1)) / i return np.rollaxis(d, 0, d.ndim)
class _SIP1D(Model): """ This implements the Simple Imaging Polynomial Model (SIP) in 1D. It's unlikely it will be used in 1D so this class is private and SIP should be used instead. """ n_inputs = 2 def __init__(self, order, coeff_prefix, param_dim=1, **params): self.order = order self.coeff_prefix = coeff_prefix self._param_names = self._generate_coeff_names(coeff_prefix) coeffname = '{0}_0_2'.format(coeff_prefix) if params: p = params.get(coeffname, None) if isinstance(p, collections.Sequence): n_params = len(p) else: n_params = 1 # TODO: This pattern is repeated in so many models and seems like a # check that could be moved into a method if param_dim != n_params: if param_dim == 1: log.info("Inferred {0} dimensions when creating a {1} " "model. Resetting param_dim to {2}".format( n_params, self.__class__.__name__, n_params)) param_dim = n_params else: raise ValueError( "Number of coefficient sets ({0}) does not match the " "number of parameter sets ({1}).".format( n_params, param_dim)) self._validate_params(ndim=2, **params) super(_SIP1D, self).__init__(param_dim=param_dim, **params) def __repr__(self): fmt = """ Model: {0} order: {1} coeff_prefix: {2} param_dim: {3} params: {4} """.format( self.__class__.__name__, self.order, self.coeff_prefix, self.param_dim, indent('\n'.join('{0}: {1}'.format(n, getattr(self, '_' + n)) for n in self.param_names), width=19)) return dedent(fmt[1:]) def __str__(self): fmt = """ Model: {0} order: {1} coeff_prefix: {2} Parameter sets: {3} Parameters: {3} """.format( self.__class__.__name__, self.order, self.coeff_prefix, self.param_dim, indent('\n'.join('{0}: {1}'.format(n, getattr(self, '_' + n)) for n in self.param_names), width=19)) return dedent(fmt[1:]) def get_num_coeff(self, ndim): """ Return the number of coefficients in one param set """ if self.order < 2 or self.order > 9: raise ValueError("Degree of polynomial must be 2< deg < 9") nmixed = comb(self.order - 1, ndim) numc = self.order * ndim + nmixed + 1 return numc def _generate_coeff_names(self, coeff_prefix): names = [] for i in range(2, self.order + 1): names.append('{0}_{1}_{2}'.format(coeff_prefix, i, 0)) for i in range(2, self.order + 1): names.append('{0}_{1}_{2}'.format(coeff_prefix, 0, i)) for i in range(1, self.order): for j in range(1, self.order): if i + j < self.order + 1: names.append('{0}_{1}_{2}'.format(coeff_prefix, i, j)) return names def _validate_params(self, ndim, **params): numcoeff = self.get_num_coeff(ndim) assert(len(params) == numcoeff) def _coef_matrix(self, coeff_prefix): mat = np.zeros((self.order + 1, self.order + 1)) for i in range(2, self.order + 1): attr = '_{0}_{1}_{2}'.format(coeff_prefix, i, 0) mat[i, 0] = getattr(self, attr).value for i in range(2, self.order + 1): attr = '_{0}_{1}_{2}'.format(coeff_prefix, 0, i) mat[0, i] = getattr(self, attr).value for i in range(1, self.order): for j in range(1, self.order): if i + j < self.order + 1: attr = '_{0}_{1}_{2}'.format(coeff_prefix, i, j) mat[i, j] = getattr(self, attr).value return mat def _eval_sip(self, x, y, coef): x = np.asarray(x, dtype=np.float64) y = np.asarray(y, dtype=np.float64) if self.coeff_prefix == 'a': result = np.zeros(x.shape) else: result = np.zeros(y.shape) for i in range(coef.shape[0]): for j in range(coef.shape[1]): if i + j > 1 and i + j < self.order + 1: result = result + coef[i, j] * x ** i * y ** j return result def __call__(self, x, y): mcoef = self._coef_matrix(self.coeff_prefix) return self._eval_sip(x, y, mcoef) class _SIPModel(SerialCompositeModel): """ Simple Imaging Polynomial (SIP) model. The SIP convention is used to represent distortions in FITS image headers. See [1]_ for a description of the SIP convention. Parameters ---------- crpix : list or ndarray of length(2) CRPIX values a_order : int SIP polynomial order for first axis a_coeff : dict SIP coefficients for first axis coeff_prefix : str: 'a', 'b', 'A' or 'B' SIP coefficient preffix b_order : int SIP order for second axis b_coeff : dict SIP coefficients for the second axis a_inv_order : int order for the inverse transformation (AP coefficients) a_inv_coeff : dict coefficients for the inverse transform b_inv_order : int order for the inverse transformation (BP coefficients) b_inv_coeff : dict coefficients for the inverse transform param_dim : int number of parameter sets References ---------- .. [1] `David Shupe, et al, ADASS, ASP Conference Series, Vol. 347, 2005 <http://adsabs.harvard.edu/abs/2005ASPC..347..491S>`_ """ n_inputs = 2 n_outputs = 2 def __init__(self, crpix, a_order, a_coeff, b_order, b_coeff, ap_order=None, ap_coeff=None, bp_order=None, bp_coeff=None, param_dim=1): self.crpix = crpix self.a_order = a_order self.b_order = b_order self.a_coeff = a_coeff self.b_coeff = b_coeff self.ap_order = ap_order self.bp_order = bp_order self.ap_coeff = ap_coeff self.bp_coeff = bp_coeff self.shift_a = Shift(-crpix[0]) self.shift_b = Shift(-crpix[1]) self.sip1d_a = _SIP1D(a_order, coeff_prefix='A', param_dim=param_dim, **a_coeff) self.sip1d_b = _SIP1D(b_order, coeff_prefix='B', param_dim=param_dim, **b_coeff) if (ap_order is not None and ap_coeff is not None and bp_order is not None and bp_coeff is not None): self.sip1d_ap = _SIP1D(ap_order, coeff_prefix='AP', **ap_coeff) self.sip1d_bp = _SIP1D(bp_order, coeff_prefix='BP', **bp_coeff) else: self.sip1d_ap = None self.sip1d_bp = None super(_SIPModel, self).__init__([self.shift_a, self.shift_b, self.sip1d_a, self.sip1d_b])
[docs]class SIP(_SIPModel): def __init__(self, crpix, a_order, a_coeff, b_order, b_coeff, ap_order=None, ap_coeff=None, bp_order=None, bp_coeff=None, param_dim=1): super(SIP, self).__init__(crpix, a_order, a_coeff, b_order, b_coeff, ap_order, ap_coeff, bp_order, bp_coeff, param_dim=1)
[docs] def inverse(self): if (self.ap_order is not None and self.ap_coeff is not None and self.bp_order is not None and self.bp_coeff is not None): return InverseSIP(self.crpix, self.a_order, self.a_coeff, self.b_order, self.b_coeff, self.ap_order, self.ap_coeff, self.bp_order, self.bp_coeff) else: raise NotImplementedError("An analytical inverse transform has " "not been implemented for this model.")
def __repr__(self): models = [self.shift_a, self.shift_b, self.sip1d_a, self.sip1d_b] fmt = """ Model: {0} """.format(self.__class__.__name__) fmt1 = " %s " * len(models) % tuple([repr(model) for model in models]) fmt = fmt + fmt1 return fmt def __str__(self): models = [self.shift_a, self.shift_b, self.sip1d_a, self.sip1d_b] fmt = """ Model: {0} """.format(self.__class__.__name__) fmt1 = " %s " * len(models) % tuple([str(model) for model in models]) fmt = fmt + fmt1 return fmt def __call__(self, x, y): """ Transforms data using this model. Parameters ---------- x : scalar, list, array input y : scalar, list or array input """ x = self.shift_a(x) y = self.shift_b(y) x1 = self.sip1d_a(x, y) y1 = self.sip1d_b(x, y) return x1, y1
[docs]class InverseSIP(_SIPModel): def __init__(self, crpix, a_order, a_coeff, b_order, b_coeff, ap_order, ap_coeff, bp_order, bp_coeff, param_dim=1): super(InverseSIP, self).__init__(crpix, a_order, a_coeff, b_order, b_coeff, ap_order, ap_coeff, bp_order, bp_coeff, param_dim=1)
[docs] def inverse(self): if (self.a_order is not None and self.a_coeff is not None and self.b_order is not None and self.bp_coeff is not None): return SIP(self.crpix, self.a_order, self.a_coeff, self.b_order, self.b_coeff, self.ap_order, self.ap_coeff, self.bp_order, self.bp_coeff) else: raise NotImplementedError("An analytical inverse transform has " "not been implemented for this model.")
def __call__(self, x, y): if self.sip1d_ap is not None and self.sip1d_bp is not None: x1 = self.sip1d_ap(x, y) y1 = self.sip1d_bp(x, y) x = self.shift_a.inverse()(x1) y = self.shift_b.inverse()(y1) return x, y else: raise NotImplementedError("An analytical inverse transform has " "not been implemented for this model.") def __repr__(self): models = [self.sip1d_ap, self.sip1d_bp, self.shift_a.inverse(), self.shift_b.inverse()] fmt = """ Model: {0} """.format(self.__class__.__name__) fmt1 = " %s " * len(models) % tuple([repr(model) for model in models]) fmt = fmt + fmt1 return fmt def __str__(self): models = [self.sip1d_ap, self.sip1d_bp, self.shift_a.inverse(), self.shift_b.inverse()] fmt = """ Model: {0} """.format(self.__class__.__name__) fmt1 = " %s " * len(models) % tuple([str(model) for model in models]) fmt = fmt + fmt1 return fmt

Page Contents