OpenVDB  1.1.0
Classes | Namespaces | Macros | Functions
NodeMasks.h File Reference
#include <cassert>
#include <cstring>
#include <iostream>
#include <openvdb/Types.h>

Go to the source code of this file.

Classes

class  BaseMaskIterator< NodeMask >
 Base class for the bit mask iterators. More...
class  OnMaskIterator< NodeMask >
class  OffMaskIterator< NodeMask >
class  DenseMaskIterator< NodeMask >
class  NodeMask< Log2Dim >
 Bit mask for the internal and leaf nodes of VDB. This is a 64-bit implementation. More...
class  NodeMask< 1 >
 Template specialization of NodeMask for Log2Dim=1, i.e. 2^3 nodes. More...
class  NodeMask< 2 >
 Template specialization of NodeMask for Log2Dim=2, i.e. 4^3 nodes. More...
class  RootNodeMask
class  RootNodeMask::BaseIterator
class  RootNodeMask::OnIterator
class  RootNodeMask::OffIterator
class  RootNodeMask::DenseIterator

Namespaces

namespace  openvdb
namespace  openvdb::v1_1_0
namespace  openvdb::v1_1_0::util

Macros

#define B2(n)   n, n+1, n+1, n+2
#define B4(n)   B2(n), B2(n+1), B2(n+1), B2(n+2)
#define B6(n)   B4(n), B4(n+1), B4(n+1), B4(n+2)

Functions

Index32 CountOn (Byte v)
 Return the number of on bits in the given 8-bit value.
Index32 CountOff (Byte v)
 Return the number of off bits in the given 8-bit value.
Index32 CountOn (Index32 v)
 Return the number of on bits in the given 32-bit value.
Index32 CountOff (Index32 v)
 Return the number of off bits in the given 32-bit value.
Index32 CountOn (Index64 v)
 Return the number of on bits in the given 64-bit value.
Index32 CountOff (Index64 v)
 Return the number of off bits in the given 64-bit value.
Index32 FindLowestOn (Byte v)
 Return the least significant on bit of the given 8-bit value.
Index32 FindLowestOn (Index32 v)
 Return the least significant on bit of the given 32-bit value.
Index32 FindLowestOn (Index64 v)
 Return the least significant on bit of the given 64-bit value.
Index32 FindHighestOn (Index32 v)
 Return the most significant on bit of the given 32-bit value.

Detailed Description

Author
Ken Museth

Macro Definition Documentation

#define B2 (   n)    n, n+1, n+1, n+2
#define B4 (   n)    B2(n), B2(n+1), B2(n+1), B2(n+2)
#define B6 (   n)    B4(n), B4(n+1), B4(n+1), B4(n+2)