OpenVDB  1.1.0
Classes | Namespaces | Typedefs | Functions
Vec4.h File Reference
#include <cmath>
#include <openvdb/Exceptions.h>
#include "Math.h"
#include "Tuple.h"
#include "Vec3.h"

Go to the source code of this file.

Classes

class  Vec4< T >

Namespaces

namespace  openvdb
namespace  openvdb::v1_1_0
namespace  openvdb::v1_1_0::math

Typedefs

typedef Vec4< int > Vec4i
typedef Vec4< unsigned int > Vec4ui
typedef Vec4< float > Vec4s
typedef Vec4< double > Vec4d
typedef Vec4s Vec4f

Functions

template<typename T0 , typename T1 >
bool operator== (const Vec4< T0 > &v0, const Vec4< T1 > &v1)
 Equality operator, does exact floating point comparisons.
template<typename T0 , typename T1 >
bool operator!= (const Vec4< T0 > &v0, const Vec4< T1 > &v1)
 Inequality operator, does exact floating point comparisons.
template<typename S , typename T >
Vec4< typename promote< S, T >
::type > 
operator* (S scalar, const Vec4< T > &v)
 Returns V, where $V_i = v_i * scalar$ for $i \in [0, 3]$.
template<typename S , typename T >
Vec4< typename promote< S, T >
::type > 
operator* (const Vec4< T > &v, S scalar)
 Returns V, where $V_i = v_i * scalar$ for $i \in [0, 3]$.
template<typename T0 , typename T1 >
Vec4< typename promote< T0, T1 >
::type > 
operator* (const Vec4< T0 > &v0, const Vec4< T1 > &v1)
 Returns V, where $V_i = v0_i * v1_i$ for $i \in [0, 3]$.
template<typename S , typename T >
Vec4< typename promote< S, T >
::type > 
operator/ (S scalar, const Vec4< T > &v)
 Returns V, where $V_i = scalar / v_i$ for $i \in [0, 3]$.
template<typename S , typename T >
Vec4< typename promote< S, T >
::type > 
operator/ (const Vec4< T > &v, S scalar)
 Returns V, where $V_i = v_i / scalar$ for $i \in [0, 3]$.
template<typename T0 , typename T1 >
Vec4< typename promote< T0, T1 >
::type > 
operator/ (const Vec4< T0 > &v0, const Vec4< T1 > &v1)
 Returns V, where $V_i = v0_i / v1_i$ for $i \in [0, 3]$.
template<typename T0 , typename T1 >
Vec4< typename promote< T0, T1 >
::type > 
operator+ (const Vec4< T0 > &v0, const Vec4< T1 > &v1)
 Returns V, where $V_i = v0_i + v1_i$ for $i \in [0, 3]$.
template<typename S , typename T >
Vec4< typename promote< S, T >
::type > 
operator+ (const Vec4< T > &v, S scalar)
 Returns V, where $V_i = v_i + scalar$ for $i \in [0, 3]$.
template<typename T0 , typename T1 >
Vec4< typename promote< T0, T1 >
::type > 
operator- (const Vec4< T0 > &v0, const Vec4< T1 > &v1)
 Returns V, where $V_i = v0_i - v1_i$ for $i \in [0, 3]$.
template<typename S , typename T >
Vec4< typename promote< S, T >
::type > 
operator- (const Vec4< T > &v, S scalar)
 Returns V, where $V_i = v_i - scalar$ for $i \in [0, 3]$.
template<typename T >
Vec4< T > minComponent (const Vec4< T > &v1, const Vec4< T > &v2)
 Return component-wise minimum of the two vectors.
template<typename T >
Vec4< T > maxComponent (const Vec4< T > &v1, const Vec4< T > &v2)
 Return component-wise maximum of the two vectors.